

Work Package 3

Cost-Benefit Analysis Modelling

25 June 2021

TSO2020 Closing Event online

Emin Aliyev - EASE
Pierre Garsoux - Tractebel
David Rivas - Circe
Wim van der Veen- DNV

Agenda

Responsible partners

Task 1: Total value to society

Task 2: Grid modelling

Task 3: Business case electrolyser

1. Total Value to Society: Based on multi-criteria analysis

This approach allows to analyse evolution of potential benefits along time horizons and scenarios

1. Total Value to Society: Adapted ENTSO-E Scenarios used as a base

We updated them for foreseen coal phase outs and RES ambition in the core countries

	Conservative	Reference	Progressive	Progressive+
Key assumptions	 2030 climate and energy targets (EC Scenario) Global ETS Nuclear dependent on national policies 	 Sustainable Transition National regulation EU ETS + Direct RES Subsidies Reduction of nuclear 	 Increased prosumers & Small-scale generation High storage growth Fuel switching 	• RES investments // • Electrification rate //
Assumptions	• EUCO ENTSO-E TYNDP 2018 • ST ENTSO-E TYNDP 2018		 DG ENTSO-E TYNDP 2018 National plans → Klimaat Akkoord → Bundesnetz agen → Energynet + New 	
	• Coal phase-out	• Coal phase-out	• Coal phase-out 2030 Bundesnetz agentur proposal	Coal phase-out 2030 Bundesnetz agentur proposal

^{*} All scenarios assume gas before coal in the merit order

1. Total Value to Society: Highest competitiveness H₂ expected in mobility

Competitivenes

But North NL industries could offer larger potential for the electrolyser by 2030

H₂ Market segmentation (North NL)

Mobility: Buses, trucks, trains, light-duty, passenger Industry: Hydrogen peroxide, Ammonia, Methanol

Green H₂ Competitiveness analysis

Cost end-user will be ready to pay for green H_2 ?

€/kg H ₂ *	Conservative		Reference		Progressive (+)		
	2030	2040	2030	2040	2030	2040	
Buses/Trucks	3.8	4.3	4.0	3.3	4.0	4.4	0
Trains	3.8	4.3	4.0	3.3	4.0	4.4	
Light-duty	4.6	5.2	4.8	3.9	4.8	5.3	-0-
Passenger	4.7	5.3	5.0	4.0	5.0	5.5	4
H2 Peroxide	1.8	2.1	2.6	1.7	2.3	2.8	Ŀ
Ammonia	1.8	2.1	2.6	1.7	2.3	2.8	L
Methanol	1.5	1.8	2.4	1.5	2.0	2.5	ŀ

^{*} Mobility: comparison with diesel* Industry: comparison with grey H₂ via SMR** Fuel/CO₂ prices varying with scenarios

1. Total Value to Society: Electrolyser outperforms battery for the considered KPIs

... and this for any given year of any specific scenario

Comparison P2G and Battery

- CO₂ emissions reduction and air quality improvement by 2040 (N-NL) for P2G
 - Transport sector decarbonisation
- Economic viability for P2G
- Higher RES curtailment reduction, lower grid losses and congestion for P2G
 - Higher availability of P2G
- P2G & battery can both participate in FCR and aFRR (i.e., flexibility)
- Lower implementation time for the battery

1. Total Value to Society: Developing the hydrogen will foster economic, environmental and societal benefits for the Northern Netherlands

... focusing first on electricity/mobility markets coupling ... but without taking industries out of the picture

- Mobility segment proves to be more promising than industrial segment (i.e., higher willingness to pay)
- Electrolyser operation strategy to be optimized throughout the project time horizon (i.e., context evolution)
- Need for large-scale hydrogen storage
- Cross-sectorial integration (electricity/mobility markets) brings key benefits
 - Revenue increase → economic viability
 - o Decarbonisation of transport sector at no extra cost for the society \rightarrow CO₂, SO_x, NO_x and particles emissions reduction
- Benefits to local economy: demonstration case, modernization of well-established gas industry
- Reduction of RES curtailment, electrical losses and congestion level
- Overall, benefits of the electrolyser increases in more and more progressive scenarios

2. Grid modelling

Network benefits of electrolyser for the four scenarios and for five KPIs

2. Grid modelling

Network benefits of electrolyser for the four scenarios and for five KPIs

RES Curtailment

Variation of Losses

Congestion reduction

Avoided transmission upgrade

2. Grid modelling

Conclusions

- Security of supply is met in all the scenarios, both for the electrolyser and the battery case.
- The electrolyser contributes to a stronger reduction of RES curtailment than the battery.
 - Benefits of the electrolyser (and battery) are greater in more progressive scenarios (higher RES penetration)
- Using electrolyser leads to a reduction on losses on the electricity network, outperforming the battery.
- The electrolyser contributes to a higher reduction of the congestion level compared to the battery, except for the conservative scenario.
 - For the majority of the scenarios, the impact of the electrolyser/battery in the reduction of the congestion decreases when they have more RES installed capacity replacing generation with higher marginal cost.
- For all scenarios, the avoided costs of the transmission grid reinforcements are below the 'Grid reinforcement threshold'.

3. Business case

Overview approach - find maximum revenue from different markets (DA, ID, aFRR)

Operation costs

3. Business case for six different bid strategies for trading residual DAM volume

Results base analysis and NPV for best strategy for analysed market scenarios

Scenario Bid strategy	Conservative	Reference	Progressive	Progressive+
1 Maximise DAM	-14.9	-224.9	-72.7	6.0
2a Residual for ID	30.7	-187.2	-32.2	42.4
2b Residual for aFRR	-62.5	-247.2	-113.6	-40.4
3a Residual for ID&FRR 50%-50%	26.4	-177.0	-26.9	41.9
3b Residual for ID&FRR 75%-25%	53.1	-155.5	-6.9	62.7
3c Residual for ID&FRR 25%-75%	1.0	-200.5	-50.6	17.0

Observations

- The best results are obtained for Conservative and Progressive+ scenario regardless of bid strategy due to their relatively low day-ahead prices and the hydrogen market size.
- Operational strategy 3b with residual volume for ID&aFRR 75%-25% shows best results regardless of scenario.

Sensitivity double markets:

- Positive NPV is reached after 20 years for all strategies and scenarios except for the Reference scenario.
- Results are most sensitive for H₂ volume
- Industrial parties often go for much shorter payback times depending on their intentions.

12

Sensitivity market prices:

Results are most sensitive for H₂ price

(Source Figures: DNV) 2021.06.25_TSO2020 Closing Event

CBA modelling

Major results, opportunities and challenges

Key message

- > Developing H₂ in the Northern Netherlands will foster economic, environmental and societal benefits
- > Cross-sectorial integration (electricity/mobility markets) brings key benefits to the region
- > Electrolyser is beneficial to better exploit RES sources thus reducing the curtailment of them and has a positive impact on congestion reduction. Electrolyser outperforms battery in most of analysed scenarios.
- ➤ Higher RES penetration drives lower green H₂production costs
- > Positive business case in 2 of 4 scenarios (not per se progressive ones)
- > Optimisation of bidding strategy improves business case

Opportunities

- Other ways P2G can help energy transition
- What does this mean for the larger market than N-NL?

Challenges

- Bridge the gap between SCBA and business case results
- > Reduction of cost and increasing performance of electrolysers
- Further optimise bidding strategy

Thank you for participating!

wim.vanderveen@dnv.com

+31 6 4671 3608