



# "Affordable and reliable transition to 100% clean electricity supply is not feasible without hydrogen infrastructure"

Prof. Mart van der Meijden

# **OUTLINE**

- 1. Scope of Activity 2
- 2. Approach
- 3. Results
- 4. Conclusions
- 5. Outlook

# 1.1 MOTIVATION OF ACTIVITY 2

#### **Urgency: Stability & reliability of energy systems at risk!**







#### 2.1 APPROACH: RESEARCH GOAL

Investigation of the performance and impact of fast active power regulation (FAPR) control strategies implemented on renewable energy hubs (incl. MW-scale controllable electrolysers)







# 3.1 VALIDATION ELECTROLYSER MODEL (VEENDAM-ZUIDWENDING)





# 3.1 VALIDATION ELECTROLYSER MODEL (VEENDAM-ZUIDWENDING)

Generic 1-MW electrolyser model:





The generic electrolyser model is able to accurately follow the measurements.

## 3.2 RESULTS: CONTROL STRATEGIES FOR PEM ELECTROLYSER



### 4 CONCLUSIONS

- The synergy between the electrical system and the hydrogen system unlocks potential for new control principles to safeguard operational flexibility of the electrical system.
- ➤ Electrolyser's demand side response can significantly enhance the dynamic performance (milliseconds) of the electrical system, increasing its resiliency.
- Power rating, location, and optimal controller design are key parameters for effective stability support by electrolysers.

### **5 OUTLOOK**

➤ New control principles for stabilization of low inertia chaotic systems (e.g. renewable hubs) should be urgently developed to accelerate the energy transition.



# Thank you for participating!